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Abstract: Different types of denoising methods are existed in databases. But every method has its own uniqueness. We 

propose a new method that is adaptive patch based system for image denoising. The approach depends on a 

pointwise selection of narrow image patches of precise size in the variable neighborhood of each pixel. 

Our contribution is to engage in each pixel the weighted sum of data points not outside an adaptive neighborhood, in a 

sense that it balances the efficiency of estimation and the stochastic error, at each contiguous position. In this paper 

introducing spatial adaptivity, we prolong the work that can be designed as a development of bilateral filtering to image 

patches. This method is tested by using AWGN and images are taken from databases with different resolutions. The 

performance of the denoising system is computed in terms of PSNR by taking different noise levels. 
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I.  INTRODUCTION 

 

In recent years, images captured by present-day cameras 

are habitually corrupted by noise [3]. With increasing 

pixel resolution but more or less the same aperture size, 

noise elimination has turn into more relevant. While 

advances in optics and hardware try to mollify such 

abominable effects, software-based denoising approaches 

are more familiar as they are normally device independent 

and extensively suitable. In the last decade, many such 

methods have been recommended, lead to extensive 

enhancement in denoising performance. In [1] and [2], we 

studied the dispute from an estimation theory aspect to 

compute the fundamental limits of denoising. The insights 

gained from that study are applied to promote a 

hypothetically sound denoising method in this paper. Most 

of the more competent regularization methods depend on 

energy functional minimization therefore they are 

designed to deliberately account for the image geometry, 

involving the compromise of global weights that weigh the 

contribution of prior gracefulness terms and a fidelity term 

[13]. Thus, associated partial differential equations (PDEs) 

and variationally methods have demonstrated intense 

results to take up the dispute of edge-preserving 

smoothing [9], [10], [11], [23], [28]. For reasons of 

performance and robustness in image processing, other 

smoothing algorithms cumulative information over a 

neighborhood of fixed size, based on two primitive 

criteria: a spatial criterion in order that filtering must be 

local and a brightness criterion to counterbalance choose 

only points that are identical in some sense. In view about 

generic approach, a typical filter is the sigma filter [32]. 

The well-known nonlinear Gaussian filter [25] defined as 
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Where i
 is the window centered at pixel ix , iY  is the 

observation at ix ,  
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and g  is a smoothing parameter to be determined and 

depends on the signal-to-noise ratio (SNR). Finally, if 

we substitute a Gaussian window to the hard-curved 

window almost the current position, we get variants of 

the bilateral filtering. 
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where ( )h i jK x x and ( )g i jL Y Y  are rescaled 

versions of nonnegative kernel functions K  and L . 

In specific, Mrazek brought out the multiple of structural 

similarities between the iterated bilateral filter. 
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and local M-smoother 
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where ˆ( ( ))g j n iw Y u x = 
1 ˆ( ( ))z j n iY u x  and 

ˆ( ( ))z j n iY u x  is the error norm for M-estimators. It 

is proved that regional M-smoothing uses the initial image 

in the averaging procedure and determine the minimum of 

a local criterion considering that iterated bilateral filtering 

uses the evolving image and must stop subsequently a 

particular number of iterations in order to avoid a flat 

image [15]- [20]. 
 

To promote better image enhancement algorithms that 

can supervise structured noise, we need precise models 

for the many regularities and geometries seen in local 

patterns. In comparison, a distinct line of work consists 

then in modelling non-local pairwise interactions 

from training data [29] or a library of natural image 

patches [21], [27]. The data points with an identical patch 

to the central patch will have larger weights in the average 

as recently proposed by Buades [7], [8] who defined 

the purported non-local means filter as 
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Where iY  denotes a vector of pixel values taken in the 

neighborhood of a point ix  . In (5), the similarity between 

two points ix and 
jx  is based on the Euclidean distance 

2

i jY Y between two vectorized image patches (see also 

[58]). It stands observing that, if the size of the patch is 

reduced to one pixel, the non-local means filter, 

also controlled by a small number of smoothing 

parameters and, is closely equivalent to (2). As in [30], 

[31], [36], we also use narrow image patches (e.g., 7x7 or 

9x9 patches) to enumerate the particular weights therefore 

they allow capture regional geometric patterns and texels 

seen in image s. Moreover, we adaptively determine 

a window (neighborhood) that probably large to balance 

the accuracy of approximation and the stochastic error, at 

each spatial position [34]. This transformation method is 

a moderately change-point detection procedure introduced 

by Lepskii [33]. The recommended procedure shares 

some common points with the contemporary non-local 

means algorithm [17], other patch -based methods [15], 

[18], [29] and the DUDE algorithm. In [16], the 

authors design a two-pass approach and substitute the 

most frequent patch /symbol seen in a local window to 

the current perverted patch /symbol.  
 

The paper is organized as follows. In Section II, tells about 

problem statement and introduce the image modeling and 

some notations. In Section III, we formulate the adaptive 

weights and patch based algorithm for image denoising. In 

Section IV, we demonstrate the ability of the method 

to restore artificially corrupted images with additive white 

Gaussian noise (WGN) with different sigma values. 

Conclusions are presented in Section V. 

 

II. PROBLEM STATEMENT 

 

In comparison to exemplar-based approaches for image 

modeling [14], [19], we propose an unsupervised method 

that uses no library of image patches and no 

computational intensive training algorithms [23]. Our 

adaptive smoothing introduces the joint spatial -

range domain as the non-local means filter [13] but has a 

more dominant adaptation to the local structure of the 

data therefore the size of windows and control parameters 

are predicted from local image statistics as follows. 

Consider the following basic image model: 

( ) , 1,2,3...,i i iY u x i G                (7) 

 

where , 2d

ix G R d    represents the spatial 

coordinates of the discrete image domain of G  pixels, 

and iY R is the observed intensity at location ix . 

For clarity, an image patch iu is cast as a fixed size square 

window of p p pixels centered at ix . In what follows, 

iu will stand for inadequately a patch or a vector of 
2p

elements where the pixels are concatenated along a fixed 

lexicographic ordering. As with all patch -based 

techniques, the size of image patches must be described in 

advance [31], [32], [35]. Traditionally, the size of 

the image patch is a parameter-free that specifies 

how stochastic the user believes the image to be. However, 

we will see that a patch size of 7x7 or 9x9 pixels manage 

take care of the local geometries and textures in the image 

while removing unwanted distortions. Finally, the 

suggested method requires no training step and may be 

then treated as unsupervised.  

 

III. IMPLEMENTATION OF ADAPTIVE PATCH 

BASED SYSTEM  

 

A. Adaptive Weights 

In order to compute the similarity between patches 
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j nu , a distance must be 

considered. In [7], [15], [18] several authors showed that 

the 2L distance 
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i n j nu u  is a reliable measure to 

compare image patches. To make a decision, we have 

rather used the following normalized distance 
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where ., 1
ˆ

nV   is 
2 2p p diagonal matrix of the form (the 

symbol ―. ‖ is used to denote a spatial position) 
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where 
( ) 2

., 1
ˆ , 1,2,.....l

nv l p  , is the local standard 

deviation of the estimator 
( )

., 1
ˆ ,l

nv   and the index l is used to 

denote a spatial position in an image patch 
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Henceforth, we introduce the following commonly used 

weight function 

  
  

,

1

, 1 , 1

~ , 1

, 1 , 1

ˆ ˆ,

ˆ ˆ,
j i n

i n j n

i j n

i n j n

x

K dist u u

K dist u u












 



 






        (10) 

 

with   1

, 1 , 1
ˆ ˆ,i n j nK dist u u



 
denoting a monotone 

decreasing function, e.g., a kernel    exp 2K z z  . 

Due to the fast decay of the exponential kernel, large 

distances between predicted patches provoke nearly zero 

weights. Note that the use of weights enables to relieve 

the structural hypothesis that the neighborhood is 

practically modeled by a square window. 

 

B. Patch based image denoising algorithm 

i. Let  , , ,p N ñ be the parameters 

ii. Initialization: Compute 
2̂  and  2

,0 ,0
ˆ ˆ,i iu u for each 

ix G and set 1n   

iii. Repeat 
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If this rule is violated at iteration n , we do not accept ,
ˆ

i nu   

and keep the estimate 
, 1

ˆ
i nu 

 as the final estimate ix , i.e. 

   , 1
ˆ ˆ ˆ 1.i i n iu x u and n x n   This estimate is 

unchanged at the next iterations and ix  is frozen. 

 Increment n  

iv. while n N  

 

IV. EXPERIMENTAL RESULTS 

 

Our results were measured by the peak signal-to-noise 

ratio (PSNR) in decibels (dB) defined as 
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where 0u is the noise-free original image.  

 

 
(a) Original Image                (b) Noisy Image 

 

 
(c) Difference Image                     (d) Denoised Image 

 

Fig. 1. Illustration of LENA image at sigma=2 

 

 
(a) Original Image                                 (b) Noisy Image 

 

 
(c) Difference Image                        (d) Denoised Image 

 

Fig.2. Illustration of LENA image at sigma=4 
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(a) Original Image                       (b) Noisy Image 

 
(c) Difference Image                     (d) Denoised Image 

 

Fig.3. Illustration of LENA image at sigma=7 

 

 
(a) Original Image                          (b) Noisy Image 

 
(c) Difference Image                      (d) Denoised Image 

 

Fig. 4. Illustration of LENA image at sigma=9 

 

 
(a) Original Image                          (b) Noisy Image 

 

 
(c) Difference Image              (d) Denoised Image 

 

Fig.5. Illustration of LENA image at sigma=15 

 
(a) Original Image                       (b) Noisy Image 

 
(c) Difference Image                (d) Denoised Image 

 

Fig.6. Illustration of LENA image at sigma=25 

 

 
(a) Original Image                      (b) Noisy Image 

 
(c) Difference Image                  (d) Denoised Image 

 

Fig.7. Illustration of LENA image at sigma=45 

 
(a) Original Image                     (b) Noisy Image 

 

 
(c) Difference Image                  (d) Denoised Image 

 

Fig.8. Illustration of LENA image at sigma=70 



IJARCCE 
  ISSN (Online) 2278-1021 
    ISSN (Print) 2319 5940 

   

International Journal of Advanced Research in Computer and Communication Engineering 

ISO 3297:2007 Certified 

Vol. 5, Issue 12, December 2016 
 

Copyright to IJARCCE                                  DOI 10.17148/IJARCCE.2016.51247                                                             216 

1 2 3 4 5 6 7 8

43.40

43.45

43.50

43.55

43.60

43.65

43.70

P
S

N
R

Iterations

 Sigma=2

 
(a) PSNR at sigma=2 
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(b) PSNR at sigma=4 
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(c) PSNR at sigma=7 

 

 
(d) PSNR at sigma=9 

 
(h) PSNR at sigma=70 

Fig. 9. Different PSNR values of LENA image at different 

noise levels 
 

 
(a) PSNR values of LENA at different sigma value 

 

 
(b) Histogram representation of LENA at different sigma 

values 

Fig10 Comparison of LENA image at different noise levels 
 

 
Fig.11. Histogram representation of PSNR versus sigma 
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TABLE 1: DENOISING RESULTS OF LENA IMAGE BY TAKING DIFFERENT SIGMA VALUES 

 

Iterati

ons 

Sigma=2 Sigma=4 Sigma=7 Sigma=9 Sigma=15 Sigma=25 Sigma=45 Sigma=70 

APBS APBS APBS APBS APBS APBS APBS APBS 

1 43.41 39.03 35.72 34.19 30.93 26.08 20.33 15.87 

2 43.56 39.51 36.78 35.60 33.15 29.02 23.31 18.32 

3 43.64 39.73 37.23 36.18 34.03 31.22 26.88 21.69 

4 43.66 39.78 37.36 36.35 34.25 31.88 28.81 25.25 

5 43.65 39.77 37.40 36.41 34.33 32.09 29.33 26.87 

6 43.61 39.75 37.41 36.43 34.35 32.17 29.51 27.36 

7 43.58 39.74 37.42 36.44 34.36 32.22 29.60 27.58 

8 43.54 39.72 37.42 36.44 34.36 32.24 29.72 27.85 
 

V. CONCLUSION 

 

In this paper, the proposed method that is adaptive patch-

based weights and variable window sizes 

are simultaneously used. An advantage of the method is 

that subjective parameters can be easily chosen and 

are comparably stable. The method allows denoise both 

piecewise-smooth and textured real images therefore 

they consist of adequate redundancy. Actually, 

the performance of our method is very close, and in some 

cases even surpasses, to that of the earlier published 

denoising methods. Also, we just discuss that the method 

can be easily correlate therefore at iteration, each pixel 

is processed independently. Here we have better results in 

terms of PSNR compared to other methods. 
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